

National Qualifications 2019

2019 Mathematics

Higher Paper 1 (Non-calculator)

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a non-commercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from permission@sqa.org.uk.

Marking instructions for each question

Question		Generic scheme	Illustrative scheme	Max mark
1.		• ¹ start to differentiate	• ¹ $2x^3$ or $6x^2$	4
		• ² complete derivative and equate to 0	• ² $2x^3 - 6x^2 = 0$	
		• ³ factorise derivative	• ³ $2x^2(x-3)$	
		• ⁴ process cubic for x	• ⁴ 0 and 3	
Note	s:			

- 1. \bullet^2 is only available if '=0' appears at either \bullet^2 or \bullet^3 stage, however see Candidate A.
- 2. Accept $2x^3 = 6x^2$ for \bullet^2 .
- 3. Accept $x^2(2x-6)$ for \bullet^3 .
- 4. For candidates who divide by x or x^2 throughout see Candidate B.
- 5. \bullet^3 is available to candidates who factorise **their** derivative from \bullet^2 as long as it is of equivalent difficulty.
- 6. x = 0 and x = 3 must be supported by valid working for \bullet^4 to be awarded.

Commonly Observed Responses:

Candidate A		Candidate B	
Stationary points when $\frac{dy}{dx}$	= 0	$2x^3 - 6x^2 = 0$ $2x^3 = 6x^2$	$\bullet^1 \checkmark \bullet^2 \checkmark$ $\bullet^3 \land$
$\frac{dy}{dx} = 2x^3 - 6x^2$	● ¹ ✓ ● ² ✓	x = 3 Dividing by x^2 is not	• ⁴ x t valid as $x = 0$ is a solution.
$\frac{dy}{dx} = 2x^2(x-3)$	• ³ ✓		
x=0 and $x=3$	•4 🗸		

Q	uestior	n	Generic scheme		Illustrative scheme		Max mark
2.			• ¹ use discriminant		• ¹ $(k-5)^2 - 4 \times 1 \times 1$		3
			• ² apply condition and simplify		• ² $k^2 - 10k + 21 = 0 \text{ or } (k - 5)^2$	=4	
			\bullet^3 determine values of k		• ³ 3, 7		
Note	s:						
2. W 3. W	/here c ³ is ava /here <i>x</i>	andie ilable appe	5) ² – 4 for • ¹ . dates state an incorrect condition e for finding the roots of the quade ears in any expression, no further in erved Responses:	ratic	. See Candidate B.		
-	lidate /			-	didate B		
	·		$b^2 - 4ac = 0$		equal roots $b^2 - 4ac > 0$	• ² 🗴	
(k-1)	$5)^2 - 4$	×1×1	• ¹ ✓	(k -	$(-5)^2 - 4 \times 1 \times 1$	•1 ✓	
$k^2 - k^2$	10 <i>k</i> + 2	1	•2 🗸	k ² -	$-10k+21=0$ or $(k-5)^2=4$		
<i>k</i> = 3	8, 7		•3 🗸	<i>k</i> =	3, 7	• ³ 🖌 1	
Cand	lidate (C					
(k-1)	$(5)^2 - 4$	×1×1	$=0$ $\bullet^{1}\checkmark$				
	10 <i>k</i> = -	-21	•² ✓				
<i>k</i> = 3	8, 7		● ³ ✓ No requirement for standard quadratic form				

C	Question		Generic scheme		Illustrative scheme	Max mark
3.			• ¹ find radius of circle C ₁	• ¹	6 stated or implied by \bullet^2	2
			\bullet^2 state equation of circle C_2	• ²	$(x-4)^2 + (y+2)^2 = 36$	
Note	es:					
2. 3. 4.	Do not Do not For can	accep accep Ididat	$\overline{y^{+1^{2}+26}} = 6$ or $\sqrt{-3^{2}+-1^{2}+26} = 6$ or $\sqrt{-3^{2}-1^{2}+26} = 6$ for \bullet^{1} . or $(x-4)^{2} + (y+2)^{2} = 6^{2}$ for \bullet^{2} . es whose working for $g^{2} + f^{2} - c$ d e Candidate A		arrive at a positive value, no mark	s are
Com	monly	[,] Obse	erved Responses:			
Can	didate	A - 'f	udging' negative values			
$\sqrt{3^2}$	$\sqrt{3^2 + 1^2 - 26} = 4$ $\bullet^1 * \bullet^2 *$					
(<i>x</i> -	$(4)^{2} + ($	y+2	² = 16			

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark	
4.	(a)		• ¹ interpret recurrence relation	• ¹ $9=6m+c$	3	
			• ² interpret recurrence relation	• ² $11 = 9m + c$		
			• ³ find m and c	• $m = \frac{2}{3}$ and $c = 5$		
Note	s:					
3. F a	or can ward 2	didato 2/3.	5	• ² . rify that these values work for the given	terms,	
Com	monly	^o Obse	erved Responses:			
	(b)		• ⁴ calculate term	• $\frac{37}{3}$ or $12\frac{1}{3}$	1	
Note	s:					
5. A	4. The answer in (b) must be consistent with the values found in (a). 5. Accept $12 \cdot 3$ or $12 \cdot 3 \dots$ for \bullet^4 . Do not accept a rounded answer.					
Com	Commonly Observed Responses:					

Q	uestio	n	Gener	ic scheme		Illustrative scheme	Max mark
5.	(a)		• ¹ find an approp	oriate vector eg	AB	• ¹ eg $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$	3
			• ² find a second compare	vector eg \overrightarrow{BC}	and	• ² eg $\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$ $\therefore \overrightarrow{AB} = \frac{3}{4}\overrightarrow{BC}$	
			• ³ appropriate co	onclusion		• ³ \Rightarrow AB is parallel to BC (common direction) and B is a common point \Rightarrow A,B and C are collinear.	
Note	s:						
1. D	o not	penal	ise inconsistent ve	ector notation (eg lac	k of arrows or brackets).	
5. D	ommo o not	n poir accep		o not gain •³. Th		vectors are collinear' or 'parallel and sh nust be reference to points A, B and C.	ומוכ
Cand	idate	A - m	issing labels		Can	didate B	
$ \left \begin{array}{c} 3 \\ -6 \\ 3 \end{array} \right $				•1 ^	ÂB	$= \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix} \qquad \bullet^1 \checkmark$	
$\left \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix} \right $	∴ Ā	$\vec{B} = \frac{3}{4}$	BC Missing labels repeated erro			$= \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$	
Bi	is a co	mmor	to BC and n point e collinear	• ³ √ 1	`	$\overrightarrow{B} = 3 \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} \text{ and } \begin{pmatrix} 4 \\ -8 \\ -8 \\ 4 \\ -8 \\ -8 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2 \\ -2$	
					E	AB is parallel to BC and b is a common point a, B and C are collinear $\bullet^3 \checkmark$	

Question	Generic scheme	Illustrative	e scheme Max mark		
(b)	• ⁴ state ratio	•4 3:4	1		
Notes:			I		
 6. Answers in (b) must be consistent with the components of the vectors in (a) or the comparison of the vectors in (a). See Candidates C and D. 7. In this case, the answer for •⁴ must be stated explicitly in part (b). 8. The only acceptable variations for •⁴ must be related explicitly to AB and BC. For BC/AB = 4/3, AB/BC = 3/4 or BC : AB = 4:3 stated in part (b) award •⁴. See Candidate E. 					
9. Accept unita	ry ratios for • ⁴ , eg $\frac{3}{4}$:1 or 1: $\frac{4}{3}$.				
10. Where a can	didate states multiple ratios which	are not equivalent, awa	rd 0/1.		
Commonly Obse	erved Responses:				
Candidate C - us	sing components of vectors	Candidate D - using comparison of vectors			
(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$	●1 🗸	(a) $\overrightarrow{AB} = \begin{pmatrix} 3 \\ -6 \\ 3 \end{pmatrix}$	• ¹ ✓		
$\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$		$\overrightarrow{BC} = \begin{pmatrix} 4 \\ -8 \\ 4 \end{pmatrix}$			
$\overrightarrow{BC} = \frac{3}{4} \overrightarrow{AB}$	• ² x	$\overrightarrow{BC} = \frac{3}{4}\overrightarrow{AB}$	• ² ×		
(b) 3:4	•4 🗸	(b) 4:3	• ⁴ 🖌 1		
$\frac{AB}{BC} = \frac{3}{4}$	cceptable variation ● ⁴ ✓	Candidate F - trivial rat Ratio is 1:1	•4 <mark>√ 2</mark>		
Ratio = $4:3$	Ignore working subsequent to correct statement made on previous line.				

Q	uestion		Generic scheme	2	Illustrativ	re scheme	Max mark
6.		● ¹ wr	ite in differentiable f	orm	• ¹ $(1-3x)^{-5}$ state	d or implied by \bullet^2	3
		•² sta	rt to differentiate		• ² $-5(1-3x)^{-6}\dots$		
		• ³ cor	nplete differentiatio	n	• ³ ×(-3)		
Note	s:						•
2. • ²	is only a	available f	ttempt to expand (1- or differentiating an Responses:	/			
	lidate A		-	Can	didate B		
y = ($(1-3x)^{-5}$	i	●1 ✓	<i>y</i> =	$(1-3x)^{-5}$	•1 ✓	
$\frac{dy}{dx} =$	= -5(1-3	$3x)^{-6} \times -3$	$\bullet^1 \checkmark$ $\bullet^2 \checkmark \bullet^3 \checkmark$	$\frac{dy}{dx}$	$=-15(1-3x)^{-6}$	• ² ✓ • ³ ¥	
$\left \frac{dy}{dx} \right =$	= -15(1-	$-3x)^{-6}$					
Cand	lidate C			Can	didate D - differen	tiating over two line	es
y = ($(1-3x)^{-5}$	i	• ¹ 🗸	<i>y</i> =	$(1-3x)^{-5}$	• ¹ 🗸	
			• ² ✓ • ³ ≭	$\begin{vmatrix} \frac{dy}{dx} \\ \frac{dy}{dy} \end{vmatrix}$	$= -5(1-3x)^{-6}$ $= 15(1-3x)^{-6}$	• ² ✓ • ³ ∧	
				$\frac{dy}{dx}$	$=15(1-3x)^{\circ}$		

Q	uestion	Generic scheme	Illustrative scheme	Max mark
7.		Method 1 • ¹ use $m = \tan \theta$	Method 1 • $m = \tan 30^{\circ}$	4
		• use $m = \tan \theta$	• $m = \tan 30^{\circ}$	
		\bullet^2 find gradient of L	$\bullet^2 \frac{1}{\sqrt{3}}$	
		• ³ use property of perpendicular lines	$\bullet^3 -\sqrt{3}$	
		• ⁴ determine equation of line	$\bullet^4 y = -\sqrt{3}x - 4$	
		Method 2	Method 2	
		• ¹ find angle perpendicular line makes with the positive direction of the <i>x</i> -axis.	• $30^\circ + 90^\circ = 120^\circ$ stated or implied by • ²	
		• ² use $m = \tan \theta$	• ² $m = \tan 120^{\circ}$	
		• ³ find gradient of perpendicular line	$\bullet^3 -\sqrt{3}$	
		\bullet^4 determine equation of line	• ⁴ $y = -\sqrt{3}x - 4$	
Note	s:			
tr In 2. Ad	igonometr Method 2 ccept $y+4$	ic ratio, \bullet^1 and \bullet^2 are unavailable. where candidates use an incorrect to $\mathfrak{A} = -\sqrt{3}(x)$ at \bullet^4 , but do not accept y	te to a trigonometric ratio or use an incorr rigonometric ratio \bullet^2 and \bullet^3 are unavailabl $+4 = -\sqrt{3}(x-0)$. Thas attempted to use a perpendicular grad	le.
		erved Responses:		
Cand m = ·	lidate A	(andidate B $n = \tan \theta$ (with or without diagram) $\bullet^1 \land$ $n = \frac{1}{\sqrt{3}}$ $\bullet^2 \checkmark 1$]
	lidate C tan $\theta = 30$		andidate D $n = \tan^{-1} 30$ $\bullet^1 *$	
$m = \frac{1}{2}$	$\frac{1}{\sqrt{3}}$	• ² <u>√</u> 1	$n = \frac{1}{\sqrt{3}} \qquad \qquad \bullet^2 \checkmark 1$]
Cand	lidate E			
tan 3	$0 = \frac{1}{\sqrt{3}}$	• ¹ ^		
$m_{\perp} =$	= -\sqrt{3}	• ² ✓ 1 • ³ ✓ 1		

Q	uestion	Generic scheme	Illustrative scheme	Nax Iark	
8.	(a)	• ¹ state integral	• $\int_{-1}^{2} (-x^2 + x + 2) dx$	1	
Note	s:				
1. Evidence for • ¹ may be appear in part (b). However, where candidates make no attempt to answer part (a), • ¹ is not available. 2. • ¹ is not available to candidates who omit the limits or 'dx'. 3. • ¹ is awarded for a candidates final expression for the area. However, accept $\int_{-1}^{2} ((x^{2}+2x+3)-(2x^{2}+x+1)) dx \text{ or } \int_{-1}^{2} (x^{2}+2x+3) dx - \int_{-1}^{2} (2x^{2}+x+1) dx \text{ without further working.}$ 4. For $\int_{-1}^{2} x^{2}+2x+3-2x^{2}+x+1 dx$, see Candidates A and B.					
	-1	erved Responses:			
Cand	idate A		Candidate B		
(a)	$\int_{-1}^{2} x^2 + 2x$	$+3-2x^2+x+1 dx$	(a) $\int_{-1}^{2} x^{2} + 2x + 3 - 2x^{2} + x + 1 dx$		
	$\int_{-\infty}^{2} \left(-x^2 + \frac{1}{2}\right) dx$	$(x+2)dx$ • ¹ \checkmark	(b) $\int_{-x^2+x+2}^{2} dx \qquad \bullet^1 \checkmark$		
	t missing braing is correct	ackets as bad form as subsequent ct.	• ¹ awarded in part (b)		
Cand	idate C - ei	rror in simplification			
	$\int_{-1}^{2} \left(x^{2} + 2x + \frac{1}{2} x^{2} + x + 2a \right)$	$3) - (2x^2 + x + 1)dx$ $dx \qquad \bullet^1 x$			

Q	uestion	ו	Generic scheme	Illustrative scheme	Max mark
	(b)		\bullet^2 integrate expression from (a)	• ² $-\frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x$	3
			• ³ substitute limits	• ³ $\left(-\frac{1}{3}(2)^3+\frac{1}{2}(2)^2+2(2)\right)$	
				$-\left(-\frac{1}{3}(-1)^{3}+\frac{1}{2}(-1)^{2}+2(-1)\right)$	
			• ⁴ evaluate area	• $\frac{9}{2}$	

5. Where a candidate differentiates one or more terms at \bullet^2 then \bullet^2 , \bullet^3 and \bullet^4 are unavailable. 6. Do not penalise the inclusion of '+*c*' or the continued appearance of the integral sign.

7. Candidates who substitute limits without integrating any term do not gain \bullet^3 or \bullet^4 .

8. Where a candidate arrives at a negative value at \bullet^4 see Candidates D and E.

Commonly Observed Responses:			
Candidate D		Candidate E	
Eg $\int_{-1}^{2} (x^2 - x - 2) dx$		Eg $\int_{2}^{-1} (-x^2 + x + 2) dx$	
$ \begin{array}{r} \vdots\\ =-\frac{9}{2}=\frac{9}{2}\\ \text{However} \end{array} $	•4 ¥	$= -\frac{9}{2}$ cannot be negative so $\frac{9}{2}$ units ² However	• ⁴ ¥
$=-\frac{9}{2}$, hence area is $\frac{9}{2}$.	•4 🗸	$=-\frac{9}{2}$, hence area is $\frac{9}{2}$.	• ⁴ 🗸
Candidate F - not using expression	from (a)		
(a) $\int_{-1}^{2} x^2 + 2x + 3 dx$	• ¹ ¥		
(b) $\int_{-1}^{2} (x^2 + 2x + 3) - (2x^2 + x + 1) dx$			
$= \left[-\frac{1}{3}x^3 + \frac{1}{2}x^2 + 2x \right]_{-1}^{2}$	• ² 2		
$= \left(-\frac{1}{3} (2)^{3} + \frac{1}{2} (2)^{2} + 2 (2) \right)$			
$-\left(-\frac{1}{3}\left(-1\right)^{3}+\frac{1}{2}\left(-1\right)^{2}+2\left(-1\right)^{3}\right)$))•³ √ 1		
$=\frac{9}{2}$	• ⁴ 🖌 1		

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark	
9.	(a)	(i)	• ¹ form an expression	• ¹ $p(2p+16)+(-2)(-3)+(4)(6)$	1	
		(ii)	• ² equate scalar product to 0	• ² $p(2p+16)+(-2)(-3)+(4)(6)=0$	3	
			• ³ factorise	• ³ $2(p+5)(p+3)$		
			\bullet^4 state values of p	• ⁴ -5 and -3		
Note	s:					
2. Th 3. Fo 4. Do	ne app or • ² to o not p	earan bea benali	• ¹ may appear in part (a)(ii). the of ' $\mathbf{u} \cdot \mathbf{v} = 0$ ' alone is insufficie warded '= 0' must appear at • ² or se the absence of the common fac	• ³ .		
			erved Responses:			
			ncorrect expression at \bullet^2	Candidate B - incorrect expression at \bullet^2		
			$-(-2)(-3)+(4)(6) \bullet^{1}\checkmark$	(i) $p(2p+16)+(-2)(-3)+(4)(6) \bullet^{1}\checkmark$		
	$= 2p^2$ $= p^2 +$			$=2p^{2}+16p+30$		
	-p 7 $p^2 + 8$	1		(ii) $p^2 + 8p + 15 = 0$ • ² ×		
		-	$(-3) = 0$ $\bullet^3 \checkmark 1$	$(p+5)(p+3)=0$ • ³ \checkmark 1		
	p = -!	5, <i>p</i> =	-3 • ⁴ <u>1</u>	$p = -5, p = -3$ • ⁴ \checkmark 1		
Cand	lidate	C - in	correct expression at \bullet^2	Candidate D		
<i>p</i> (2)	p+16))+(-2	(-3)+(4)(6) • ¹ ✓	$\left(2p^2+16p\right)$		
$2p^2$	+16 <i>p</i>	+24 =	= 0 • ² ×	(i) $\mathbf{u}.\mathbf{v} = \begin{bmatrix} 6 \\ \bullet^1 \mathbf{x} \end{bmatrix}$		
2 (<i>p</i>	+6)(p		• ³ <u>√</u> 1	24		
<i>p</i> = -	- 6, <i>p</i> =	=2	• ⁴ 🖌 1	(ii) $p(2p+16)+6+24=0$ • ² \checkmark		
				$2p^2 + 16p + 30 = 0$		
				$(p+5)(p+3)=0$ $\bullet^3 \checkmark$		
				p = -5, p = -3 • ⁴ ✓		

Q	Question		Generic scheme	Illustrative scheme	Max mark	
(b)			• ⁵ interpret relationship	• $3(p) = 2(2p+16)$ or $3\mathbf{u} = 2\mathbf{v}$ or equivalent	2	
			$ullet^6$ determine value of p	•6 -32		
Note	s:					
_						
Com	monly	Obse	rved Responses:			
Cand	lidate	E				
For p	aralle	l vect	ors $\theta = 0^{\circ}$			
Using	g u . v =	u v	$\cos heta$			
p(2)	$p(2p+16) + (-2)(-3) + (4)(6) = \sqrt{p^2 + (-2)^2 + 4^2} \sqrt{(2p+16)^2 + (-3)^2 + 6^2} \qquad \bullet^5 \checkmark$					
$p^{2} +$	$p^2 + 64p + 1024 = 0$					
<i>p</i> = -	$p = -32 \qquad \qquad \bullet^6 \checkmark$					

Q	Question		Generic scheme	Illustrative scheme	Max mark
10.	(a)		• ¹ identify value of a	• ¹ 3	1
Note	s:				
Com	monly	^o Obse	rved Responses:		
	(b)		\bullet^2 identify value of k	• ² -2	1
Note	s:				
Com	monly	Obse	rved Responses:		

Qı	uestion	Generie	c scheme	Illustrative scheme	Max mark
11.		• ¹ start to integra	ite	• $\sin\left(3x-\frac{\pi}{6}\right)\dots$	4
		• ² complete integ	ration	$\bullet^2 \dots \times \frac{1}{3}$	
		• ³ substitute limit	ts	$\bullet^3 \left(\frac{1}{3}\sin\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)\right)$	
				$-\left(\frac{1}{3}\sin\left(3\times0-\frac{\pi}{6}\right)\right)$	
		• ⁴ evaluate integ	ral	$\bullet^4 \frac{1}{3}$	
Notes	s:				
				or start to integrate individual ter	
bra	acket or use	e another invalid a	pproach eg $\sin(3)$	$3x - \frac{\pi}{6} \bigg)^2$ or $\int \cos(3x) - \cos\left(\frac{\pi}{6}\right) dx$	c, award 0/4.
3. Ca av	ndidates w ailable.	ho work in degrees	from the start c	inued appearance of the integral s annot gain \bullet^1 . However, \bullet^2 , \bullet^3 and	• ⁴ are still
4. ● ¹	may be awa	arded for the appe	arance of $\sin\left(3x\right)$	$\left(x-\frac{\pi}{6}\right)$ in the first line of working,	however see
5. ● ⁴ 6. Wł av	nere candid ailable.	lable where candid ates use a mixture		lered both limits within a trigonon radians, \bullet^3 is not awarded. However	
Comr	nonly Obse	rved Responses:			
Cand	idate A - us	sing addition formu	ıla	Candidate B - integrated over two) lines
$\int_{0}^{\frac{\pi}{9}} \left(e^{-\frac{\pi}{9}} \right) \left(e^{-\frac{\pi}{9}$	$\cos 3x \cos \frac{\pi}{6}$	$+\sin 3x\sin\frac{\pi}{6}dx$		$\int_{0}^{\frac{\pi}{9}} \left(\cos\left(3x - \frac{\pi}{6}\right) \right) dx$	
$=\frac{1}{3}$ si	in $3x \times \frac{\sqrt{3}}{2}$		•1 ✓	$=\sin\left(3x-\frac{\pi}{6}\right)$	• ¹ 🗸
		$-\frac{1}{3}\cos 3x \times \frac{1}{2}$	• ² ✓	$=\frac{1}{3}\sin\left(3x-\frac{\pi}{6}\right)$	• ² x
Cand	idate C - in	tegrated in part		Candidate D - integrated in part	
3 sin	$\left(3x-\frac{\pi}{6}\right)$		• ¹ ✓ • ² ≭	$-\frac{1}{3}\sin\left(3x-\frac{\pi}{6}\right)$	• ¹ ¥ • ² ✓
3 sin	$\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)$	$-3\sin\left(0-\frac{\pi}{6}\right)$	• ³ <u>1</u>	$-\frac{1}{3}\sin\left(3\times\frac{\pi}{9}-\frac{\pi}{6}\right)+\frac{1}{3}\sin\left(0-\frac{\pi}{6}\right)$	• ³ <u>1</u>
3			• ⁴ 🖌 1	$-\frac{1}{3}$	• ⁴ 🖌 1

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark	
12.	(a)		• ¹ interpret notation	• ¹ $f(5-x)$ or $\frac{1}{\sqrt{g(x)}}$	2	
			• ² state expression for $f(g(x))$	• ² $\frac{1}{\sqrt{5-x}}$		
Note	s:					
	•		vithout working, award both • ¹ and erved Responses:	d •².		
	-					
	lidate 1 $\overline{f_x}$	A	● ¹ ¥ ● ² √ 1			
	(b)		• ³ state range	• ³ $x \ge 5$	1	
Note	s:					
	2. Answer at \bullet^3 must be consistent with expression at \bullet^2 . 3. For candidates who interpret $g(f(x))$ as $f(g(x))$, do not award \bullet^3 .					
Com	monly	0bse	erved Responses:			
Cand	lidate	В				
5	$\frac{1}{\sqrt{x}}$		● ¹ ★ ● ² ✓ 1			
<i>x</i> ≤ 0			• ³ ×			

Question		on	Generic scheme		Illustrative scheme	Max mark
13.	(a)	(i)	• ¹ determine $\cos p$		• ¹ $\frac{2}{\sqrt{5}}$	1
		(ii)	• ² determine $\cos q$		$\bullet^2 \frac{3}{\sqrt{10}}$	1
Note	s:		•			
1. W	here o	candic	lates do not simplify the perfect sq	uare	s see Candidates A and B.	
Com	monly	/ Obse	erved Responses:			
Cano	lidate	A - n	o evidence of simplification	Can	didate B - simplification in part (b)	
	$p = \frac{\sqrt{2}}{\sqrt{5}}$	-	• ¹ ¥	(a)	$\cos p = \frac{\sqrt{4}}{\sqrt{5}} \cos q = \frac{\sqrt{9}}{\sqrt{10}}$	
cosq	$q = \frac{\sqrt{9}}{\sqrt{1}}$		• ² <u>1</u>		•' ✓ • ² ✓	
			Repeated error not penalised twice	(b)	$\sin(p+q) = \frac{5}{\dots}$ Roots have be simplified in (
Q	uestic	on	Generic scheme		Illustrative scneme	mark
	(b)		• ³ select appropriate formula and express in terms of p and q		• ³ sin $p \cos q + \cos p \sin q$	3
			• ⁴ substitute into addition formul	a	$\bullet^4 \frac{1}{\sqrt{5}} \times \frac{3}{\sqrt{10}} + \frac{2}{\sqrt{5}} \times \frac{1}{\sqrt{10}}$	
			• ⁵ evaluate $\sin(p+q)$		• ⁵ $\frac{1}{\sqrt{2}}$	
Note	s:		·			
ur	navaila	able.		\ V	$\left(\frac{3}{10}\right) + \cos\left(\frac{2}{\sqrt{5}}\right) \times \sin\left(\frac{1}{\sqrt{10}}\right)$. • ⁴ and • ⁵	are
3. Fo	or any	atten	npt to use $\sin(p+q) = \sin p + \sin q$, ● ⁴	and \bullet are unavailable.	
	_		answers such as $\frac{5}{\sqrt{50}}$ or $\frac{5}{5\sqrt{2}}$ bu		$= \frac{5}{\sqrt{5} \times \sqrt{10}}.$	
			wer must be given as a single fract se trigonometric ratios which are l		han -1 or greater than 1.	
Com	monly	/ Obse	erved Responses:			
		, 5550				

Question		n	Generic scheme	Illustrative scheme	Max mark		
14.	(a)		• ¹ apply $m \log_n x = \log_n x^m$	$\bullet^1 \dots \log_{10} 5^2$ stated or implied by \bullet^2	3		
			• ² apply	• ² $\log_{10}(4 \times 5^2)$			
			• ³ evaluate logarithm	• ³ 2			
Note	s:						
Ca 2. Do	andida o not p	ite A. Denali	se the omission of the base of the line er with no working, award 0/3.	above within a valid strategy, however arithm at \bullet^1 or \bullet^2 .	see		
Com	monly	0bse	erved Responses:				
Cand	lidate	Α					
2 log	10 (4×	5)	• ² x				
2log	10 (20))					
log ₁₀	$\log_{10}(20)^2$ • ¹ \checkmark 1 • ³ \land						

Q	Question		Generic scheme		Illustrative scheme	Max mark
	(b)		Method 1		Method 1	3
			• ⁴ apply $\log_a x - \log_a y = \log_a \frac{x}{y}$		• $\log_2 \frac{7x-2}{3} = \dots$	
			$ullet^5$ express in exponential form		• ⁵ $\frac{7x-2}{3} = 2^5$	
			• ⁶ solve for x		• ⁶ 14	
			Method 2		Method 2	
			• ⁴ apply $m \log_n x = \log_n x^m$		• ⁴ = $\log_2 2^5$	
			● ⁵ simplify		• ⁵ eg $\log_2 \frac{7x-2}{3} = \dots$ or	
					$\log_2(7x-2) = \log_2(3\times 2^5)$	
			• ⁶ solve for x		• ⁶ 14	
Note	es:					•
4. ● ⁶	' is onl	y awa	rded if each line of working is equi	vale	nt to the line above within a valid stra	tegy.
Com	monly	0bse	erved Responses:			
Cano	lidate	A - in	valid working leading to solution	Can	didate B - invalid working leading to s	olution
log ₂	$\frac{7x-2}{3}$	$=\log$	$\bullet_2 5^2 \bullet^4 \checkmark \bullet^5 \mathbf{x}$	log ₂	$\frac{7x-2}{3} = \log_2 5 \times 2 \qquad \qquad \bullet^4 \checkmark$	• ⁵ ×
x = 1	1		• ⁶ 🗹 2	<i>x</i> =	32 7 ● ⁶ ✓ 2	2
Cano	lidate	С		Can	didate D	
log ₂	$\left(\frac{7x-7}{2}\right)$	$\left(\frac{2}{2}\right) = $	5log ₂ 2 ● ⁵ ✓	log ₂	$(7x-2)-\log_2 3 = \log_2 2^5 \qquad \bullet^4 \checkmark$	
	$\frac{7x}{3} - \frac{2}{3}$			log ₂	$\left(\frac{7x-2}{3}\right) = \log_2 25 \qquad \bullet^5 \checkmark$	

Q	uestic	on	Generic scheme		Illustrative scheme		Max mark
15.	(a)		 ¹ substitute appropriate double angle formula 	<u>,</u>	• ¹ $2\sin x^{\circ}\cos x^{\circ} + 6\cos x^{\circ} = 0$		4
			• ² factorise		• ² $2\cos x^{\circ}(\sin x^{\circ}+3)=0$		
			• ³ solve for and $\sin x^{\circ}$		• ³ $\cos x^{\circ} = 0$ $\sin x^{\circ} = -3$		
			• ⁴ solve for x		• ⁴ $x = 90$, 270 'no solutions'		
Note	s:		·		·		
2. Do 3. Do 4. Ca m 5. • ⁴ 6. Ao	o not o not andida arking is onl	penali penali ates w g verti y avai sin	ically). ilable if one of the equations at $\bullet^{2} = \sqrt{-3}$ at \bullet^{4} .	n fac s do	not gain $ullet^4$ (if marking horizontal	lly) o	ır•³ (if
			erved Responses:	1			
-	lidate		$\int \cos x \qquad \bullet^1 \checkmark$		didate B - insufficient evidence for $n x^{\circ} \cos x^{\circ} + 6 \cos x^{\circ} = 0$	or ● ³	
	x = -i		$\mathbf{a}^2 \wedge \mathbf{a}^3 \wedge \mathbf{a}^3$			2 🧹	
-	3		• ⁴ 🖌 1			³ ^ •	1
					5x = 0, $5mx = 5$	•	,- /
					vever, 90, 270, 'no solutions'	³ 🗸 •	o ⁴ ✓
	(b)		• ⁵ state solutions		• ⁵ 45, 135, 225,315		1
Note	s:	<u> </u>	I		I		
Com	monly	/ Ohse	erved Responses:				
Com	monty	0030					

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
16.	(a)		 ¹ identify centre ² apply distance formula and 	• ¹ (1, -2) stated or implied by • ² • ² $\sqrt{(4-1)^2 + (k-(-2))^2}$ leading to	2
			demonstrate result	$\sqrt{k^2 + 4k + 13}$ teading to	
Note	s:				
			ndidates who 'fudge' their working bet	tween \bullet^1 and \bullet^2 .	
	(b)		• ³ interpret information	$\bullet^3 \sqrt{k^2 + 4k + 13} > 5$	4
			• ⁴ express inequality in standard quadratic form	• $k^{4} k^{2} + 4k - 12 > 0$	
			• ⁵ determine zeros of quadratic expression	• ⁵ -6, 2	
			• ⁶ state range with justification	• ⁶ $k < -6, k > 2$ with eg sketch or table of signs	
Note	s:				
• ⁴ 3. Ca	, ● ⁵ ar andida	nd • ⁶ a ates w	re still available for dealing with an ex	from part (a), • ³ is not available. How pression of equivalent difficulty. m the outset lose • ³ , • ⁴ and • ⁶ . Howeve	
Com	monly	v Obse	erved Responses:		
Canc	lidate	Α			
'	+ 4 <i>k</i> +				
	4 <i>k</i> – 1		● ⁴ ★ ● ⁵ ✓		
	-6, <i>k</i> = 9 to lie		ide the circle		
	-6, $k >$		• ⁶ ×		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
17.	17. (a)		• ¹ expand brackets	• $\sin^2 x - \sin x \cos x$ $-\sin x \cos x + \cos^2 x$	3
			\bullet^2 use double angle formula for sim	• ² sin 2x	
			• ³ use trigonometric identity and express in required form	• ³ $1-\sin 2x$	
Note	s:				
			nswer with no working award 0/3.		
Com	monly	v Obse	rved Responses:		
Cand	lidate	A - in	correct notation		
sin x	$^{2}-2s$	in x co	$sx + cosx^2$ $\bullet^1 x$		
1-si	n 2 <i>x</i>		• ² 🗸 • ³ 🗴		
	(b)		• ⁴ link to (a) and integrate one ter	m •4 eg $\int (1-\sin 2x) dx = x$	2
			• ⁵ complete integration	• ⁵ $x + \frac{1}{2}\cos 2x + c$	
Note	s:				
3. W	here t	he sta		of the form $p + q \sin rx$. ant working, \bullet^4 and \bullet^5 are not available.	
Com	monty	UDSE	erved Responses:		

[END OF MARKING INSTRUCTIONS]

National Qualifications 2019

2019 Mathematics

Higher Paper 2

Finalised Marking Instructions

© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

Qı	uestio	n	Generic scheme		Illustrative scheme		Max mark	
1.	(a)		$ullet^1$ calculate the midpoint of AC		•1 (-4, -3)		3	
			$ullet^2$ calculate the gradient of BD		$e^2 - \frac{1}{3}$			
			• ³ determine equation of BD		• 3 3y = -x - 13			
Note	s:							
2. • ³ 3. A ⁴ si 4. • ³	 •² is only available to candidates who use a midpoint to find a gradient. •³ is only available as a consequence of using the midpoint of AC and the point B. At •³ accept any arrangement of a candidate's equation where constant terms have been simplified. •³ is not available as a consequence of using a perpendicular gradient. 							
	-		rved Responses:					
	oint _{AC}		erpendicular Bisector of AC -3) ● ¹ ✓	Cano m_{AC}	lidate B - Altitude through B =9	• ¹ ^		
	=9⇒	`		m_{\perp} =	$=-\frac{1}{9}$	• ² 🗴		
~	x+31 ther p		● ³ <mark>✓ 2</mark> ndicular bisectors award 0/3	9 <i>y</i> +	<i>x</i> = -61	• ³ ✓ 2		
Cand	idate	C - M	edian through A	Cano	lidate D - Median through C			
Midp	oint _{BC}	(4,-1) • ¹ x	Mid	$\operatorname{point}_{AB}(3,-10)$	• ¹ ×		
m _{AM} =	$=\frac{11}{9}$		• ² <u>1</u>	m _{CM}	$=-\frac{8}{3}$	● ² ✓ 1		
9 <i>y</i> -	11x + 5	53 = 0	• ³ 🖌 2	3 <i>y</i> +	8x + 6 = 0	• ³ ✓ 2		

Qu	lestion	Generic scheme	Illustrative scheme	Max mark
	(b)	• ⁴ calculate gradient of BC	• ⁴ -1	3
		• ⁵ use property of perpendicular lines	• ⁵ 1	
		• ⁶ determine equation of AE	• ⁶ $y = x - 7$	
Notes	s:			
6. At sir	: ● ⁶ accep mplified.	vailable to candidates who find and use a ot any arrangement of a candidate's equa		
	idate E			
		nt from incorrect substitution		
	-			
$m_{\rm BC} =$	$=\frac{-3-11}{6+8}=$	=-1 • *		
$m_{AE} =$ y = x				
	(c)	• ⁷ find x or y coordinate	• ⁷ $x = 2$ or $y = -5$	2
		• ⁸ find remaining coordinate of the point of intersection	• ⁸ $y = -5$ or $x = 2$	
Notes	;: <u> </u>			
7. Fo	or (2,-5)	with no working, award 0/2.		
Comm	nonly Ob	served Responses:		
		•		

Question		Generic scheme	Illustrative scheme	Max mark		
2.		• ¹ express $6\sqrt{x}$ in integrable form	• $6x^{\frac{1}{2}}$	4		
		• ² integrate first term	• ² $\frac{6x^{\frac{3}{2}}}{\frac{3}{2}}$			
		• ³ integrate second term	• $3 \dots -\frac{4x^{-2}}{-2} \dots$			
		• ⁴ complete integration	• $4x^{\frac{3}{2}} + 2x^{-2} + 5x + c$			
Note	s:					
3. D 4. D	o not penal o not penal	Its must be simplified at \bullet^4 stage for \bullet^4 ise the appearance of an integral sign ise the omission of $+c^2$ at \bullet^2 and \bullet^3 .				
Com	monly Obse	erved Responses:				
∫(6	lidate A $x^{\frac{1}{2}} - 4x^{-3} +$					
2	$=\frac{6x^{\frac{3}{2}}}{\frac{3}{2}} - \frac{4x^{-2}}{-2} + 5x + c$ $=\frac{12}{3}x^{\frac{3}{2}} + 2x^{-2} + 5x + c$					
= 4√	$\sqrt{x^3} + \frac{2}{\sqrt{x}} + 5$	5x+c • ⁴ × arded over two lines of working				
•⁴ ca	nnot be aw	arded over two lines of working				

Q	Question		Generic scheme	Illustrative scheme	Max mark
3.	(a)		• ¹ identify pathway	• ¹ $-\mathbf{p}+\mathbf{r}$	1
Note	s:				
1. A	ccept	. − P +	R for \bullet^1 .		
Com	monly	/ Obse	erved Responses:		
	(b)		• ² state an appropriate pathway	• ² eg $\overrightarrow{EB} + \overrightarrow{BF}$ stated or implied by • ³	2
			• 3 express pathway in terms of \mathbf{p} , \mathbf{c} and \mathbf{r}	• $\mathbf{p} - \mathbf{r} + \frac{3}{4}\mathbf{q}$ or equivalent	
Note	s:				
2. •	³ can	only b	e awarded for a vector expressed in	terms of all three of ${f p},{f q}$ and ${f r}.$	
Com	monly	/ Obse	erved Responses:		
Canc	lidate		nd no pathway stated	andidate B - incorrect expression in p, q and no pathway stated	and r
p-r	•		Award 1/2	$+\frac{3}{4}\mathbf{q} \text{ or }+\mathbf{q}-\frac{1}{4}\mathbf{q}$ Award	1/2

(Questio	on	Generic scl	heme	Illustrative scheme	Max mark
4.	(a)		• ¹ state values of a and b		• ¹ $a = 0.973, b = 30$	1
Not	es:					
1.	Accept	: <i>u</i> _{n+1} =	$= 0 \cdot 973u_n + 30 \text{ for } \mathbf{\bullet}^1.$			
Con	nmonly	/ Obse	erved Responses:			
			_			
	(b)	(i)	 ² communicate conc to exist 	lition for limit	 •² a limit exists as the recurre relation is linear and −1<0.973<1 	nce 1
		(ii)	 ³ know how to find limit ⁴ process limit and state estimated population 		• ³ $L = 0.973L + 30$ or $L = \frac{30}{1 - 0.973}$ • ⁴ 1100	2
Not	es:					
3. 4.	or state or $-1 < 0^2$ is no $-1 \le 0^2$ or state Do not	ement a < 1 ot avai $\cdot 973 \le$ ement accep	1 or $ 0.973 < 1$ or $0 < constants$ s such as " 0.973 lies (as <i>a</i> is previously defined lable for: 1 or $0.973 < 1$; s such as "it is between of $L = \frac{b}{1-a}$ with no fur with no working awar	between —1 and ined). en —1 and 1" ther working fo	11";	
Con	nmonly	/ Obse	erved Responses:			
Candidate A - no rounding requiredCandidate B - correct rounding $u_{n+1} = 0.97u_n + 30$ $\bullet^1 \times$ \vdots $u_{n+1} = 0.027u_n + 30$ $\bullet^1 \times$ $L = \frac{30}{1 - 0.97}$ $\bullet^3 \checkmark 1$ $L = \frac{30}{1 - 0.027}$ $\bullet^3 \checkmark 1$ $L = 1000$ $\bullet^4 \checkmark 2$ $L = 0$ $\bullet^4 \checkmark 1$						• ¹ x • ³ √ 1 • ⁴ √ 1
u _{n+1} A lir	$= 2 \cdot 7i$ mit doe $\frac{30}{1 - 2 \cdot 7}$	$u_n + 30$ es not	exist as $2 \cdot 7 > 1$ • ²	× √ 1		

Q	Question		Generic scheme	Illustrative scheme	Max mark					
5.			• ¹ identify shape and roots	$ullet^1$ parabola with roots at -2 and 4	2					
			• ² interpret shape	• ² parabola with a minimum turning point at $x = 1$ -2 0 4 x						
Note	s:									
	 •¹ and •² are only available for attempting to draw a 'parabola'. Commonly Observed Responses: 									
Com	monty	ODSC								

Q	uestic	n	Generic scheme	Illustrative scheme	
6.	(a)		• ¹ use compound angle formula	• $k \cos x^{\circ} \cos a^{\circ} - k \sin x^{\circ} \sin a^{\circ}$ stated explicitly	4
	• ² compare coefficients		• ² compare coefficients	• ² $k \cos a^\circ = 2, k \sin a^\circ = 3$ stated explicitly	
	• ³ process for k		• ³ process for k	• ³ \sqrt{13}	
Nata			• ⁴ process for <i>a</i> and express in required form	• ⁴ $\sqrt{13}\cos(x+56\cdot3)^\circ$	

1. Accept $k(\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ})$ for \bullet^{1} .

Treat $k \cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ}$ as bad form only if the equations at the \bullet^2 stage both contain k.

- 2. Do not penalise the omission of degree signs.
- 3. $\sqrt{13}\cos x^{\circ}\cos a^{\circ} \sqrt{13}\sin x^{\circ}\sin a^{\circ}$ or $\sqrt{13}(\cos x^{\circ}\cos a^{\circ} \sin x^{\circ}\sin a^{\circ})$ is acceptable for \bullet^{1} and \bullet^{3} .
- 4. •² is not available for $k \cos x^\circ = 2$, $k \sin x^\circ = 3$, however •⁴ may still be gained. See Candidate F.
- 5. Accept $k \cos a^\circ = 2$, $-k \sin a^\circ = -3$ for \bullet^2 .
- 6. •³ is only available for a single value of k, k > 0.
- 7. •⁴ is not available for a value of a given in radians.
- 8. Accept values of *a* which round to 56.
- 9. Candidates may use any form of the wave function for \bullet^1 , \bullet^2 and \bullet^3 . However, \bullet^4 is only available if the wave is interpreted in the form $k \cos(x+a)^\circ$.
- 10. Evidence for \bullet^4 may not appear until part (b).

Commonly Observed Responses:

Candidate A		Candidate B	Candidate C
	● ¹ ▲	$k\cos x^{\circ}\cos a^{\circ} - k\sin x^{\circ}\sin a^{\circ}$	$\cos x^{\circ} \cos a^{\circ} - \sin x^{\circ} \sin a^{\circ}$
$\sqrt{13}\cos a^\circ = 2$ $\sqrt{13}\sin a^\circ = 3$	• ² ✓ • ³ ✓	$\cos a^\circ = 2$ $\sin a^\circ = 3 \qquad \bullet^2 \mathbf{x}$	$\cos a^{\circ} = 2$ $\sin a^{\circ} = 3$ • ² 2
$\tan a^\circ = \frac{3}{2}$ $a = 56 \cdot 3$		$\tan a^{\circ} = \frac{3}{2}$ Not consistent with equations at \bullet^2 .	$k = \sqrt{13} \qquad \bullet^{3} \checkmark$ $\tan a^{\circ} = \frac{3}{2}$ $a = 56 \cdot 3$
$\sqrt{13}\cos(x+56\cdot 3)^\circ$	• ⁴ ✓	$\sqrt{13}\cos(x+56\cdot3)^\circ$ $\bullet^3\checkmark$ \bullet^4 x	$\sqrt{13}\cos(x+56\cdot 3)^\circ$ • ⁴ ×

Question	Gene	ric scheme	Illu	ustrative scheme	Max mark
Candidate D - en $k \cos x^{\circ} \cos a^{\circ} - k$		Candidate E - errors $k \cos x^{\circ} \cos a^{\circ} - k \sin x$		Candidate F - use of x $k \cos x^{\circ} \cos a^{\circ} - k \sin x^{\circ} \sin x^{\circ}$	
$k\cos a^\circ = 3$ $k\sin a^\circ = 2$	• ² x	$k\cos a^{\circ} = 2$ $k\sin a^{\circ} = -3$	• ² x	$k \cos x^{\circ} = 2$ $k \sin x^{\circ} = 3$ • ²	
$\tan a^\circ = \frac{2}{3}$ $a = 33 \cdot 7$		$\tan a^\circ = -\frac{3}{2}$ $a = 303 \cdot 7$		$\tan a^{\circ} = \frac{3}{2}$ $x = 56 \cdot 3$	
$\sqrt{13}\cos(x+33.7)$	• • ³ ✓ • ⁴ ✓ 1	$\sqrt{13}\cos(x+303\cdot7)^\circ$	• ³ ✓ • ⁴ ✓ 1	$\sqrt{13}\cos(x+56\cdot3)^\circ$ \bullet^3	 1
Candidate G $k \cos A \cos B - k \sin B$ $k \cos A^{\circ} = 2$ $k \sin A^{\circ} = 3$ $\tan A^{\circ} = \frac{3}{2}$ $a = 56 \cdot 3$ Unclusted unclusted Unclus	• ¹ x • ² x ear at this e whether A es to <i>a</i> or to <i>x</i> .				
(b)	 •⁵ link to (a) •⁶ solve for x + •⁷ solve for x 	a	• ⁶	$(x+56\cdot3)^{\circ} = 3$ $(393\cdot69)$ 326·31 270	3
Notes: 11. Do not penal		n rounds to 34, 326, 3	94 leading to	270 and 337.	
Commonly Obse	rved Responses:				

Ç	uestio	on	Generic	: scheme		Illus	trative scheme	Max marl
7. (a)			Meti • ¹ identify commo	nod 1 on factor	•	• $-6(x^2-4)$ implied by		3
			• ² complete the s	quare		$-6(x-2)^2$		
			• ³ process for <i>r</i> ar required form	nd write in	•	• ³ -6 $(x-2)^2$	-1	
			Metl	hod 2			Method 2	
			• ¹ expand comple			$p^1 px^2 + 2pq$		
			• ² equate coeffici	ents		$p^2 p = -6, 2$	$pq = 24 pq^2 + r =$	=25
			• ³ process for <i>q</i> arrequired form	nd <i>r</i> and write in	n	• $-6(x-2)^2$	-1	
Com	monly	v Obse	rved Responses:	-				
Cane	didate	Α			Cand	idate B		
-6($(x^2 - 4)$	-25			px^2 -	$+2pqx+pq^2$	+ <i>r</i>	● ¹ ✓
((x-2)		-25	● ¹ ✓ ● ² ✓	-	-6, 2pq = 24, -2, $r = -1$	$pq^2 + r = -25$	• ² ✓ • ³ ∧
($(x-2)^2$		n to general markir	• ³ ✓ ng principle (h)	7		• ³ is lost as ans completed squa	
	didate	-		• ¹ x	Cand	idate D		
`	$x^2 + 24$ (x+12)	/	5 14)–25		-6(($(x+12)^2 - 144$)-25	• ¹ ^ • ² ×
`	x+12)		/	• ³ 🖌 1	($(+12)^2 + 839$)	• ³ 1
	didate				-	idate F		
```	$(x-2)^2$		-4x+4)-1		$=6x^{2}$	+24x-25 $x^{2}-24x+25$		• ¹ 🗴
		<b>`</b>	$-6x^2 + 24x - 24 - 1$		``	$x^2 - 4x \dots$		3
		=	$-6x^{2}+24x-25$	Award 3/3	``	$(x-2)^2 \dots$ $(x-2)^2 \dots$		• ² ✓ 1 • ³ ≭
					0	$(x-z) \cdots$		··

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
	(b)		Method 1 • ⁴ differentiate	Method 1 • ⁴ $-6x^2 + 24x - 25$	3
			• ⁵ link with (a) and identify sign of $(x-2)^2$	• $f'(x) = -6(x-2)^2 - 1$ and $(x-2)^2 \ge 0  \forall x$	
			• ⁶ communicate reason	• ⁶ eg : -6(x-2) ² -1<0 $\forall x$ $\Rightarrow$ always strictly decreasing	
			Method 2	Method 2	
			• ⁴ differentiate	• ⁴ -6 $x^2$ +24 $x$ -25	
		• ⁵ identify maximum value of $f'(x)$		• ⁵ 'maximum value is -1' or annotated sketch including <i>x</i> -axis	
			• ⁶ communicate reason	• ⁶ -1<0 or 'graph lies below x-axis' $\therefore f'(x) < 0 \ \forall x$ $\Rightarrow$ always strictly decreasing	
Note	s:				
			do not penalise $(x-2)^2 > 0$ or the om	. ,	
5. A a	at •⁵ co accept	ommu state	accept $-6(x-2)^2 \le 0$ or $-6(x-2)^2 < 0$ nication must be explicitly in terms of ments such as '(something) ² $\ge 0$ ', 'so is still available.	the derivative of the given function. D	o not
Com	monly	v Obse	erved Responses:		
-	lidate	-			
```	/		-24x-25 • ⁴ ✓		
f'(x) = -6	(x-2)	² -1 • ⁵ ^		
-6(<i>x</i>	$(-2)^2$ -	-1<0			
→ ct	rictly	docro	$a^6 \wedge$		

 \Rightarrow strictly decreasing

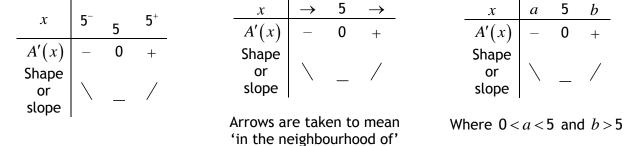
•6 🔨

Q	uestio	n	Generic scheme	Illustrative scheme	Max mark
8.	(a)		Method 1	Method 1	3
			• ¹ equate composite function to <i>x</i>	• ¹ $f(f^{-1}(x)) = x$	
			• ² write $f(f^{-1}(x))$ in terms of $f^{-1}(x)$	• ² $\sqrt[3]{f^{-1}(x)} + 8 = x$	
			• ³ state inverse function	• ³ $f^{-1}(x) = (x-8)^3$	
			Method 2	Method 2	
			• ¹ write as $y = f(x)$ and start to rearrange	• ¹ $y = f(x) \Longrightarrow x = f^{-1}(y)$ $y - 8 = \sqrt[3]{x}$	
			• ² express x in terms of y	$\bullet^2 x = \left(y - 8\right)^3$	
			• ³ state inverse function	• ³ $f^{-1}(y) = (y-8)^3$ $\Rightarrow f^{-1}(x) = (x-8)^3$	
Note	es:				
			accept ' $y - 8 = \sqrt[3]{x}$ ' without reference		
2. I	n Meth	od 2,	accept $f^{-1}(x) = (x-8)^3$ without refere	nce to $f^{-1}(y)$ at \bullet^3 .	
			accept f^{-1} written in terms of any dum	my variable eg $f^{-1}(y) = (y-8)^3$.	
4.	y = (x -	-8) ³ d	loes not gain ● ³ .		
5. ე	$f^{-1}(x)$	=(x-	8) ³ with no working gains 3/3.		

Question	Generic scheme		Illustrative scheme		Max mark	
Commonly Obse	rved Responses:					
Candidate A - m	ultiple expressions for $y = f(x)$	Can	didate B - multiple expressions	for $y =$	f(x)	
$f(x) = \sqrt[3]{x} + 8$		f(x	$) = \sqrt[3]{x} + 8$			
$y = \sqrt[3]{x} + 8$		y =	$\sqrt[3]{x}+8$			
$y-8=\sqrt[3]{x}$		<i>x</i> =	$\sqrt[3]{y}+8$			
$x = \left(y - 8\right)^3$		y =	$(x-8)^3$			
$y = (x - 8)^3$		f^{-1}	$(x) = (x - 8)^3$	Award	2/3	
$f^{-1}(x) = (x-8)^3$	Award 2/3					
Candidate C - Bl		Can	didate D			
$f'(x) = \dots$	• ³ x	f^{-1}	$(x) = x - 8^3$			
		with	no working	Award	0/3	
Candidate E $x \rightarrow \sqrt[3]{x} \rightarrow \sqrt[3]{x} + \frac{\sqrt[3]{x}}{\sqrt{x}} \rightarrow +8$ $\therefore -8 \rightarrow ()^{3}$ (x-8) $f^{-1}(x) = (x-8)$	$(\mathbf{a}^{1}\mathbf{a}^{2}a$]	warded for knowing to perform inverse operations in reverse			
(b) Notes:	• ⁴ state domain		• ⁴ 9 \leq $x \leq$ 18, $x \in \mathbb{R}$		1	
1. Do not penalise the omission of $x \in \mathbb{R}$. Commonly Observed Responses:						

(Questic	on	Generic scheme		Illustrative scheme	Max mark
9.	(a)		• ¹ identify initial power		• ¹ 120	1
Not	es:					
Con	nmonly	0bsei	rved Responses:			
	(b)		• ² interpret information		• ² $102 = 120e^{-0.0079t}$ stated or implied by • ³	4
			• ³ process equation		• ³ $e^{-0.0079t} = 0.85$	
			• ⁴ write in logarithmic form		• $\log_e 0.85 = -0.0079t$	
			• ⁵ process for t		• ⁵ 20·572	
Not	es:	<u>I </u>		1		
4. 5. 6. 7.	Accept Accept The ca For car	In 0 · 8 20 · 57 Iculation Ididate	to be used at • ⁴ stage. See Candidat $85 = -0.0079t \ln e$ for • ⁴ . or 20.6 at • ⁵ . on at • ⁵ must follow from the valid ses who take an iterative approach in the iterations P_i is evaluated for	d use to ar	rive at $t = 20.6$ award 1/4.	
Con	nmonly	v Obsei	rved Responses:			
$\frac{102}{e^{-0.0}}$	10	e-0.0079 <i>t</i> 0.85	$e^{2} \checkmark$ $e^{3} \checkmark$ $e^{4} \checkmark$ $e^{5} \checkmark$	102	$1^{179_t} = 0.85$	9 ² ✓ 9 ³ ✓ 9 ⁴ ∧ • ⁵ √ 1
20·			• •			
	didate $_{e} 0.85 =$		079 <i>t</i> • ⁴ ✓		$\begin{array}{ll} \text{lidate D} \\ 0.85 = -0.0079t \end{array} $	4 🗸
	t = 20.6 years $t = 20$ years 6 months Incorrect conversion			<i>t</i> = 2	0 years 6 months	9 ⁵ x
$15 = e^{-0.0}$ \log_{0}	$didate = 100e^{-0}$ $= 100e^{-0}$ $= 0^{0079t} = 0$ $_{e} 0.15 = 0.000$	0.0079 <i>t</i>) • 15	subsequent to answer is not penalised $\bullet^3 \checkmark 1$ $\bullet^4 \checkmark 1$ $\bullet^5 \checkmark 1$			

Q	uestic	tion Generic scheme		Illustrative scheme	Max mark		
10.	(a)		 ¹ use -3 in synthetic division or in evaluation of quartic 	$\bullet^1 \frac{-3}{3} \frac{3 \ 10 \ 1 \ -8 \ -6}{3}$	2		
			• ² complete division/evaluation and interpret result	or $3 \times (-3)^{4} + 10 \times (-3)^{3} + (-3)^{2}$ $-8 \times (-3) - 6$ • $^{2} \begin{array}{c c} -3 & 3 & 10 & 1 & -8 & -6 \\ \hline & -9 & -3 & 6 & 6 \\ \hline & 3 & 1 & -2 & -2 & 0 \end{array}$ Remainder = $0 \therefore (x+3)$ is a factor or $f(-3) = 0 \therefore (x+3)$ is a factor			
	ommu		ion at \bullet^2 must be consistent with workinately at 0 before \bullet^2 can be awarded.	ing at that stage ie a candidate's workir	ng must		
2. A		-	of the following for \bullet^2 :				
1			3)=0 so $(x+3)$ is a factor'				
I	 'since remainder = 0, it is a factor' the '0' from any method linked to the word 'factor' by 'so', 'hence', ∴, →, ⇒ etc. 						
3. D	o not • •	accept doubl ' $x = -$	ot any of the following for \bullet^2 : the underlining the '0' or boxing the '0' -3 is a factor', ' is a root' word 'factor' only, with no link.	· · · · · ·			
Com	Commonly Observed Responses:						


Question	Generic scheme	Illustrative scheme	Max mark
(b)	 ³ identify cubic and attempt to factorise ⁴ find second factor 	• ³ eg $3 \ 1 \ -2 \ -2$ 1 $3 \ 1 \ -2 \ -2$ • ⁴ eg $3 \ 4 \ 2$ 3 $4 \ 2$ 0	5
	 ⁵ identify quadratic ⁶ evaluate discriminant ⁷ interpret discriminant and factorise fully 	3 4 2 0 leading to $(x-1)$ • ⁵ $3x^2 + 4x + 2$ • ⁶ -8 • ⁷ since -8 < 0, quadratic has no (real) factors leading to $(x+3)(x-1)(3x^2+4x+2)$	
Notes:	who arrive at $(x+3)(x-1)(3x^2+4x+2)$) by using algebraic long division or by	
inspection ga 5. Evidence for 6. Accept $-8 <$ 7. Do not accept • $(x+3)$ 8. Accept $(x+3)$	ain \bullet^3 , \bullet^4 and \bullet^5 . \bullet^6 may appear in the quadratic formula <0 so no real roots' with the fully fact ot any of the following for \bullet^7 : $B)(x-1)(3x^2+4x+2)$ does not factoris B)(x-1)()() cannot factorise for $B)(x-1)3x^2+4x+2$, with a valid reason uadratic factor obtained at \bullet^5 can be factorise	a. orised quartic for • ⁷ : e ^f urther. n for • ⁷ .	

Commonly Observed Responses:						
Candidate A		Candidate B				
$(x+3)(x-1)(3x^2+4x+2)$	•5 🗸	$(x+3)(x-1)(3x^2+4x+2)$	•5 🗸			
$b^2 - 4ac = 16 - 24 < 0$	• ⁶ ^	$b^2 - 4ac < 0$	● ⁶ ∧			
so does not factorise	• ⁷ ✓ 1	so does not factorise	•7 ^			

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ express A in terms of x and h	• $(A =) 16x^2 + 16xh$	3
			• ² express height in terms of x	• ² $h = \frac{2000}{8x^2}$	
			• ³ substitute for <i>h</i> and complete proof	• $A = 16x^2 + 16x \times \frac{2000}{8x^2}$	
				leading to $A = 16x^2 + \frac{4000}{x}$	
Note	s:				1
3. F	or car	ndidat	tion for h at \bullet^3 must be clearly shown es who omit some of the surfaces of the erved Responses:		
	(b)		• ⁴ express <i>A</i> in differentiable form	• $16x^2 + 4000x^{-1}$	6
			• ⁵ differentiate	• $32x - 4000x^{-2}$	
			 equate expression for derivative to 0 	• $32x - 4000x^{-2} = 0$	
			• ⁷ process for x	• ⁷ 5	
			• ⁸ verify nature	• ⁸ table of signs for a derivative (see below) : minimum or $A''(x) = 96 > 0 \implies$ minimum	
			• ⁹ evaluate A	• $A = 1200$ or min value = 1200	

- 4. For a numerical approach award 0/6.
- 5. •⁶ can be awarded for $32x = 4000x^{-2}$.
- 6. For candidates who integrate any term at the •⁵ stage, only •⁶ is available on follow through for setting their 'derivative' to 0.
- 7. •⁷, •⁸ and •⁹ are only available for working with a derivative which contains an index ≤ -2 .
- 8. $\sqrt[3]{\frac{4000}{32}}$ must be simplified at \bullet^7 or \bullet^8 for \bullet^7 to be awarded.
- 9. •⁸ is not available to candidates who consider a value of $x \le 0$ in the neighbourhood of 5.
- 10. \bullet^9 is still available in cases where a candidate's table of signs does not lead legitimately to a minimum at \bullet^8 .
- 11. •⁸ and •⁹ are not available to candidates who state that the minimum exists at a negative value of x. See Candidates C and D.

For the table of signs for a derivative, accept:

- For this question do not penalise the omission of 'x' or the word 'shape'/'slope'.
- Stating values of A'(x) in the table is an acceptable alternative to writing '+' or '-' signs. Values must be checked for accuracy.

• The only acceptable variations of A'(x) are: A', $\frac{dA}{dx}$ and $32x - 4000x^{-2}$.

Commonly Observed Responses:

commonly observed Responses.			
Candidate A - differentiating ove	r multiple lines	Candidate B - differentiat $A = 16x^2 + 4000x^{-1}$	ing over multiple lines
$A'(x) = 32x + 4000x^{-1}$	-	$A'(x) = 32x + 4000x^{-1}$	• •
$A'(x) = 32x - 4000x^{-2}$	• ⁵ ¥	$A'(x) = 32x - 4000x^{-2}$	• ⁵ ×
$32x - 4000x^{-2} = 0$	● ⁶ <mark>✓ 1</mark>	$32x - 4000x^{-2} = 0$	• ⁶ 🖌 1
Candidate C - only considers 5		Candidate D - considers 5 separate ta	-
$A = 16x^2 + 4000x^{-1}$	•4 🗸	$A = 16x^2 + 4000x^{-1}$	•4 🗸
$A' = 32x - 4000x^{-2} = 0$	●5 🗸 ●6 🗸	$A' = 32x - 4000x^{-2} = 0$	● ⁵ ✓ ● ⁶ ✓
$x = \pm 5$	•7 🗴	$x = \pm 5$	•7 🗴
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$x \rightarrow 5 \rightarrow$	$x \rightarrow -5 \rightarrow$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$A' \begin{vmatrix} - & 0 & + \\ / & - & \backslash \end{vmatrix}$
∴ minimum	● ⁸ <mark>✓ 1</mark>	\therefore minimum when $x = 5$	¹ ∧ • ⁸ ✓ 1
A = 1200 or min value = 1200	• ⁹ 🖌 1	A = 1200 or min value = 1	1200/ \•° <u>~ 1</u>
			lgnore incorrect working in second table

Q	uestion	Generic scheme	Illustrative scheme	Max mark
12.		 Method 1 •¹ state linear equation 	Method 1 • $\log_4 y = 3x - 1$	5
		• ² introduce logs	• ² $\log_4 y = 3x \log_4 4 - \log_4 4$	
		• ³ use laws of logs	• $\log_4 y = \log_4 4^{3x} - \log_4 4$	
		• ⁴ use laws of logs	• $\log_4 y = \log_4 \left(\frac{4^{3x}}{4}\right)$ or $\log_4 y = \log_4 4^{-1} 4^{3x}$	
		• ⁵ state a and b	• $a = \frac{1}{4}, b = 64$	
		Method 2 •1 state linear equation	Method 2 • $\log_4 y = 3x - 1$	5
		$ullet^2$ convert to exponential form	$\bullet^2 y = 4^{3x-1}$	
		• ³ use laws of indices	• $y = 4^{-1}4^{3x}$	
		• ⁴ state a	$\bullet^4 a = \frac{1}{4}$	
		• ⁵ state b	• 5 $b = 64$	
		Method 3	Method 3 The equations at • ¹ , • ² , • ³ and • ⁴ must be stated explicitly.	5
		• ¹ introduce logs to $y = ab^x$	• $\log_4 y = \log_4 ab^x$	
		• ² use laws of logs	• ² $\log_4 y = \log_4 a + x \log_4 b$	
		• ³ interpret intercept	• ³ $-1 = \log_4 a$	
		• ⁴ interpret gradient	• ⁴ $3 = \log_4 b$	
		• ⁵ state a and b	• ⁵ $a = \frac{1}{4}, b = 64$	

	Method 4		mark
	• ¹ interpret point on log graph	Method 4 • ¹ $x = 3$ and $\log_4 y = 8$	5
	• ² convert from log to exponential form	• ² $x = 3$ and $y = 4^8$	
	\bullet^3 interpret point and convert	• ³ $x = 0$ and $\log_4 y = -1$ $x = 0$ and $y = 4^{-1}$	
	• ⁴ substitute into $y = ab^x$ and evaluate a	• ⁴ $4^{-1} = ab^0 \Longrightarrow a = \frac{1}{4}$	
	• ⁵ substitute other point into $y = ab^x$ and evaluate b	$\bullet^5 4^8 = \frac{1}{4}b^3 \Longrightarrow b = 64$	
Notes:			
1. In any me	ethod, marks may only be awarded within	a valid strategy using $y = ab^x$.	
2. Accept y	$=\frac{1}{4}\cdot 64^x$ for \bullet^5 .		
 Markers m mix and n Penalise t 	nust identify the method which best matc natch between methods. the omission of base 4 at most once in any		st not
5. Do not ac	cept $a = 4^{-1}$.		
Commonly O	bserved Responses:		

Q	uestior	า	Generic scheme	Illustrative scheme	Max mark		
13.			• ¹ interpret information given	• $f'(x) = 3x^2 - 16x + 11$ or $f(x) = \int (3x^2 - 16x + 11) dx$	5		
			• ² integrate any two terms	• ² eg $\frac{3x^3}{3} - \frac{16x^2}{2} \dots$			
			• ³ complete integration	• ³ +11 <i>x</i> + <i>c</i>			
			• ⁴ interpret information given and substitute	• $0 = 7^3 - 8 \times 7^2 + 11 \times 7 + c$			
			• ⁵ process for c and state expression for $f(x)$	• ⁵ $f(x) = x^3 - 8x^2 + 11x - 28$			
Note	s:						
1. F	or cand	didate	es who make no attempt to integra	e to find $f(x)$ award 0/5.			
 3. If 4. F 5. F 6. C 7. A 8. C 	 Do not penalise the omission of f(x) or dx or the appearance of +c at •¹. If any two terms have been integrated correctly •¹ may be implied by •². For candidates who omit +c, only •¹ and •² are available. For candidates who differentiate any term, •³ •⁴ and •⁵ are not available. 						
	that line of working to be awarded.						
	Commonly Observed Responses:						
	-	-		Candidate B - partial integration $f(x) = x^3 - 8x^2 + 11 + c$ $\bullet^1 \checkmark \bullet^2 \checkmark \bullet^3 = 0$	×		
f(x)	$) = 7^3 -$	-8×7		$0 = 7^3 - 8 \times 7^2 + 11 + c$ • ⁴ \checkmark 1			
c = - f(x)		$-8x^{2}$ -		c = 38 $f(x) = x^3 - 8x^2 + 49$ • ⁵ 1			

Q	Question		Generic scheme		Illustrative scheme	Max mark
14.			• ¹ expand	• ¹	u.u + u.v	4
			• ² evaluate u.u	• ²	16	
			$ullet^3$ determine equation in $\cos heta$	•3	$20\cos\theta = 5$ or $\cos\theta = \frac{5}{20}$	
			• ⁴ evaluate angle	•4	75.5° or 1.31 radians	
Note	s:					
2. W			ot \mathbf{u}^2 for $\mathbf{\bullet}^1$, however $\mathbf{\bullet}^2$, $\mathbf{\bullet}^3$ and $\mathbf{\bullet}^4$ as is no evidence for $\mathbf{\bullet}^1$, then $\mathbf{\bullet}^2$, $\mathbf{\bullet}^3$ an		available. e not available, however see Candid	ates C
3. W	/here	candi	dates use $ \mathbf{u} eq 4$, then $ullet^3$ and $ullet^4$ are	not av	vailable.	
4. W	/here t	there	is no evidence of using $ \mathbf{u} ^2$, $\mathbf{\bullet}^3$ is no	ot avail	able. See Candidate A.	
			ise omission of units in final answer			
		-	opearance of 284.5° .			
7. A	ccept	answ	ers which round to 76 $^\circ$ or 1 \cdot 3 radian	IS.		
Comr	nonly	Obse	erved Responses:			
Cand	idate	A	-	Candid	ate B	
	$+\mathbf{v}) =$			16+ u .		2 🗸
``	$0\cos\theta$		• ² ×	$\mathbf{u}.\mathbf{v} = 5$	_	
			3 2 3	$\cos\theta =$	$=\frac{5}{22}$ $\bullet^3 \checkmark$	
coso	$r=\frac{17}{20}$			$\theta = 75$		
$\theta = 3$	£1·7…	0	• ⁴ <mark>√ 1</mark>	0-75	•••	
Cand	Candidate C - missing working C			Candid	ate D - missing working	
u.u =				21–16		
u . v =	=21–1 _	6		$\cos\theta =$,3 🗸
$\cos\theta$	$r = \frac{3}{20}$			$\theta = 75$	20	
$\theta = 7$	20 '5·5°		•4 🗸	0=73	•`• • •	

Q	Question		Generic scheme	Illustrative scheme	Max mark
15.	(a)		• ¹ find gradient of radius	• $^{1} -\frac{1}{3}$	3
			• ² state gradient of tangent	• ² 3	
Noto			• ³ state equation of tangent	• ³ $y=3x-2$	

1. Do not accept
$$y = \frac{3}{1}x - 2$$
 for \bullet^3 .

- 2. \bullet^3 is only available as a consequence of trying to find and use a perpendicular gradient.
- 3. At \bullet^3 accept, y-3x+2=0 or any other rearrangement of the equation where the constant terms have been simplified.

Commonly Observed Responses:

	(b)	(i)	• ⁴ find coordinates of T	•4 (0,-2)	1
		(ii)	• ⁵ find midpoint CT	• ⁵ (4,5)	3
			• ⁶ find radius of circle with diameter CT	• ⁶ $\sqrt{65}$ stated or implied by • ⁷	
			• ⁷ state equation of circle	• ⁷ $(x-4)^2 + (y-5)^2 = 65$	
Note					

Notes:

- 4. Answers in part (b)(i) must be consistent with answers from part (a).
- 5. Accept x = 0, y = -2 for \bullet^4 .

6.
$$(x-4)^2 + (y-5)^2 = (\sqrt{65})^2$$
 does not gain •⁷.

7. \bullet^7 is not available to candidates who use a line other than CT as the diameter of the circle.

Commonly Observed Responses:

[END OF MARKING INSTRUCTIONS]